首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   276721篇
  免费   26978篇
  国内免费   12932篇
电工技术   18427篇
技术理论   32篇
综合类   27776篇
化学工业   38354篇
金属工艺   13554篇
机械仪表   14083篇
建筑科学   39762篇
矿业工程   14090篇
能源动力   12220篇
轻工业   18451篇
水利工程   12407篇
石油天然气   13907篇
武器工业   4086篇
无线电   18778篇
一般工业技术   23777篇
冶金工业   13461篇
原子能技术   2521篇
自动化技术   30945篇
  2024年   566篇
  2023年   3756篇
  2022年   6690篇
  2021年   9240篇
  2020年   9036篇
  2019年   7163篇
  2018年   6634篇
  2017年   8331篇
  2016年   9863篇
  2015年   10603篇
  2014年   18577篇
  2013年   17001篇
  2012年   19868篇
  2011年   21931篇
  2010年   16211篇
  2009年   16740篇
  2008年   15227篇
  2007年   18691篇
  2006年   17130篇
  2005年   14677篇
  2004年   12338篇
  2003年   10607篇
  2002年   8808篇
  2001年   7207篇
  2000年   5989篇
  1999年   4630篇
  1998年   3370篇
  1997年   2927篇
  1996年   2449篇
  1995年   2070篇
  1994年   1724篇
  1993年   1271篇
  1992年   1078篇
  1991年   809篇
  1990年   686篇
  1989年   608篇
  1988年   376篇
  1987年   267篇
  1986年   227篇
  1985年   263篇
  1984年   198篇
  1983年   169篇
  1982年   109篇
  1981年   102篇
  1980年   99篇
  1979年   47篇
  1978年   27篇
  1977年   25篇
  1975年   22篇
  1959年   35篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Thermal degradation of butadiene-based model elastomers was analyzed via a novel reactive molecular dynamics simulation (ReaxFF) method. The molecular simulation was carried out on 40 monomer units connected together. Degradation pathways of both homopolymer and copolymer of butadiene-based model elastomers such as polybutadiene (BR) and poly (styrene-co-butadiene) (SBR) were studied. The evolution of different fragmented products was examined as a function of time and heating rate. The formation mechanisms of different degraded fragments were visualized via the simulation method. The major decomposition products obtained from these model compounds were the monomers and comonomers. Pyrolysis gas chromatography–mass spectrometry (py-GC–MS) analysis was performed on the commercial samples of BR and SBR to verify the simulation results. The results obtained from the reactive simulation were very consistent with the experimental results. The activation energy required for the thermal decomposition of butadiene-based model elastomers were calculated both from the ReaxFF simulation and thermogravimetric analysis (TGA). The results were also in good agreement. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48592.  相似文献   
992.
In this study, the effect of Eucalyptus globulus wood (UE) used as a filler (5–20% w/w) on the physical and thermal properties of high-density polyethylene (HDPE) composites was evaluated. To improve the compatibility with HDPE, the wood was modified (TE) using crude glycerol derived from biodiesel production. The addition of 20% (w/w) of UE or TE led to more rigid and durable composite materials compared to neat HDPE (about 50 or 100% increase in tensile strength, respectively). Composites also revealed 55–75°C higher temperatures at maximal degradation rates. The advantageous behavior of TE over UE in composites was attributed to the improvement of surface morphology of modified wood and it is better compatibility with the HDPE as revealed by surface energy analysis. The changes in wetting behavior of HDPE and ensuing HDPE-TE composites (contact angles of ca 72 and 80°, respectively) explain the matrix-filler interactions. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48619.  相似文献   
993.
Silks have been widely used as biomaterials due to their biocompatibility, biodegradability, and excellent mechanical properties. In the present work, native spider silk was used as organic template for controlled nucleation of hydroxyapatite (HA) nano-coating that can act as biomimetic interface. Different bio-inspired neutralization methods and process parameters were evaluated to optimize the silk functionalization. The morphology and chemical composition were investigated by scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analysis and mechanical properties were studied through tensile tests. Results showed that the optimized protocol enabled a controlled and homogeneous nucleation of apatite nano-crystals while maintaining silk mechanical performances after mineralization. This study reports the optimization of a simple and effective bio-inspired nucleation process for precise nucleation of HA onto spider silk templates, suitable to develop high-performance hybrid interfaces for bone tissue engineering. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48739.  相似文献   
994.
Although many preparation approaches have been developed, it remains a huge challenge to achieve ultraviolet (UV)-protection films that combine high transparency, excellent UV-shielding, and mechanical properties. Herein, we demonstrate a facile and eco-friendly process for fabricating strong, flexible, and transparent UV-protective poly(vinyl alcohol) (PVA) films by exploiting silicomolybdic acid (SiMoA) as UV absorber and reinforcing phase. Fourier-transform infrared analysis confirms the formation of strong hydrogen-bonding interactions between PVA and SiMoA. The glass-transition temperature, mechanical properties, and UV-shielding stability of the UV-protective PVA composite films obviously increase with increasing the content of SiMoA. By incorporation of only 2 wt % SiMoA, the UV-protective PVA composite film can block more than 90% of UV light in the entire UV regions and retain high visible light transparency (up to 95%). Simultaneously, the UV-protective PVA composite film presents excellent mechanical properties with a tensile strength of 65.2 MPa and an elongation at break of 172.6%, which are 72.0 and 69.5% higher than that of pristine PVA films. This work provides a simple but effective approach for creating strong, flexible, and transparent UV-blocking polymeric materials via hydrogen-bonding assembly, which are expected to have wide application prospects in UV-protection field. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48813.  相似文献   
995.
Surfaces with antibacterial and antistatic functionalities are one of the new demands of todays' industry. Therefore, a facile method for the preparation of multifunctional polyaniline/copper/TiO2 (PANI/Cu/TiO2) ternary nanocomposite based on in situ polymerization is presented. This nanocomposite was characterized through the different techniques and was utilized for induction of antibacterial and antistatic properties in polyurethane coatings. Measurement of the conductivity of PANI/Cu/TiO2 ternary nanocomposite indicated higher electrical conductivity of this nanocomposite compared to pure PANI. The antibacterial activity of the modified polyurethane coatings was tested against Gram-positive and Gram-negative bacteria which led to remarkable reduction in bacterial growth. Besides, it was observed that polyurethane coating with 2 wt % content of ternary nanocomposite has a surface electrical resistance equal 4 × 108 Ω/sq which acquires surface electrical resistance of standard antistatic coatings. The final coatings were also characterized in terms of thermal and mechanical properties to investigate the effect of the ternary nanocomposite on improvement of these properties. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48825.  相似文献   
996.
An experimental study is carried out to quantitatively assess the dispersion quality of carbon nanotubes (CNTs) in epoxy matrix as a function of CNT variant and weight fraction. To this end, two weight fractions (0.05% and 0.25%) of as-grown, oxidized, and functionalized CNTs are used to process CNT/epoxy nanocomposites. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared analysis of different variants of CNTs are used to establish the efficiency of purification route. While the relative change in mechanical properties is investigated through tensile and micro-hardness testing, thermal conductivity of different nanocomposites is measured to characterize the effect of CNT addition on the average thermal properties of epoxy. Later on, a quantitative analysis is carried out to establish the relationship between the observed improvements in average composite properties with the dispersion quality of CNTs in epoxy. It is shown that carboxylic (-COOH) functionalization reduces the average CNT agglomerate size and thus ensures better dispersion of CNTs in epoxy even at higher CNT weight fraction. The improved dispersion leads to enhanced interfacial interaction at the CNT/epoxy interface and hence provides higher relative improvement in nanocomposite properties compared to the samples prepared using as-grown and oxidized CNTs. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48879.  相似文献   
997.
In order to reduce the toxic side effects of chemotherapeutic drugs and improve the targeting and efficiency of cancer treatment, the development of drug delivery system has received great attention. In this study, second generation polyglutamic acid dendrimers (G2) are used as basic materials to produce porous nanoparticles through cross link by crosslinkers containing disulfide bonds. The crosslinked products (G2)n have negative electricity and abundant voids, which enable them to adsorb the electronegative anticancer drug DOX. At the same time, in order to transport DOX to the tumor site, we modified FA on DOX and encapsulated it in magnetic mesoporous silica (FA-DOX-MSNs). Therefore, the final nanoparticles (FA-DOX-MSNs/(G2)n) not only have dual targeting ability to transport DOX to the tumor site, but also have reductive responsiveness that can release drugs responsively in the tumor cells. In addition, it has good biocompatibility and endocytosis ability.  相似文献   
998.
Thermal oxidative aging and other chemical-induced degradation greatly affect the service life of elastomer components. In this article, we presented a strategy to predict the long-term mechanical behavior of elastomeric components, to foresee the failure of elastomer components in design stage. The accumulation and consumption of small molecule reactants in elastomers are described using a diffusion–reaction process. Free-volume theory is applied to consider the diffusivity change during this process. Degradation of elastomers under elevated temperature up to 500 K, environmental pressure up to 4 atm, and different cross-link densities are studied in this simulation. Methodology of prediction of mechanical behavior is proposed based on the affined network model.  相似文献   
999.
胡昌雄  杜飞  刘浩东  陈国华  张晓明 《农药》2020,59(4):296-299
[目的]为明确避雨栽培葡萄上3种常用杀虫剂及不同剂型对葡萄蓟马的室内生物活性和葡萄不同生长期的田间防治效果。[方法]试验采用浸液饲喂法测定了葡萄蓟马的室内种群活性,并进行田间防效试验。[结果]3种杀虫剂对葡萄蓟马的室内生物活性啶虫脒和阿维菌素较高,吡虫啉相对较低,依次为啶虫脒EC>啶虫脒WG>阿维菌素EC>吡虫啉EC>吡虫啉WG;田间防效试验发现,在葡萄的花前期和浆果生长期啶虫脒施药后1 d的防效均在60%以上,施药后7 d啶虫脒和阿维菌素的防效均在80%~95%,而吡虫啉的防效在不同时期施用均低于80%;不同剂型间,乳油表现出相对较好的防治效果。[结论]阿维菌素和啶虫脒可推荐为避雨栽培葡萄上防治蓟马的首选药剂,2者属于不同类型杀虫剂,适宜交替使用,能降低蓟马对杀虫剂快速产生抗性的风险,应该在葡萄花期前对蓟马进行防除,防止其数量暴发。  相似文献   
1000.
先采用KH-560硅烷偶联剂体积分数不同的硅烷溶液处理Q235钢,再制备聚偏氟乙烯(PVDF)防腐涂层。研究了KH-560体积分数对硅烷溶液水解率及PVDF涂层的表面形貌、疏水性和耐蚀性的影响。结果表明,采用KH-560体积分数为9%的硅烷溶液预处理Q235钢后制备的PVDF涂层表面疏水性较强,在400°C内具有较好的热稳定性,硬度为5H,耐弯曲性、耐酸碱性、耐盐水性(14 d)均优于未采用硅烷溶液处理的O235钢上涂覆的PVDF涂层。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号